

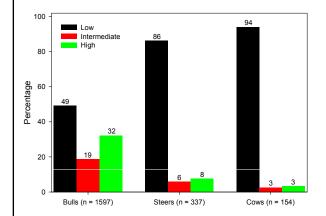
Meat pH is an indicator of eating quality						
Ultimate pH Value	Quality	Colour				
5.4 - 5.8 (low pH)	Tender meat	5.5				
5.8 – 6.2 (intermediate pH)	Inconsistently tender	5.8				
> 6.2 (high pH, DFD meat)	Tender meat Microbial spoilage Dark Less flavour	6.5				
agresearch		7.0				

Project overview

1. pH profile of New Zealand beef cattle

 Results from a survey of New Zealand beef cattle to determine the pH profile of beef cattle, with specific focus on bull beef.

2. Tenderness is pH compartmentalised


Why are low and high pH_u meat tender?

3. Small heat shock proteins and toughness in intermediate pH_{II} meat

Biochemical basis for toughness in intermediate pH_u beef

Overall ultimate pH status of beef in New Zealand

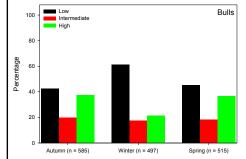
Survey over two years and three different seasons on three representative slaughter plants in the North Island.

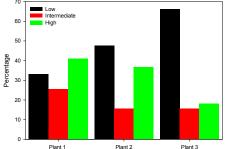
Ultimate pH_u was measured from the loins samples stored at -1.5°C at 48 hours after slaughter.

Higher proportion of intermediate and high pH_{u} meat in bulls.

Overall ultimate pH status of beef in New Zealand

	1990		1993		1994			2009		
	n	Mean pH _u	n	Mean pH _u	n	Mean pH _u	% low pH _u	n	Mean pH _u	% low pH _u
All beef					2969	5.8	69	2088	5.8	58
Cows					934	5.7	69	154	5.5	94
Steers	80	5.9	65	5.8	542	5.6	91	337	5.6	86
Bulls	80	6.3	85	6.2	766	6.2	29	1597	6.0	49


Currently, about half of New Zealand bull beef is intermediate or high pH_u.


BUT

There has been a progressive decline in intermediate and high pH_u bulls over the years.

Plant and seasonal variation in the ultimate pH of bull beef

The incidence of intermediate and high pH_u meat was lower in winter. Overall, Plant 3 had the least percentage of intermediate and high pH_u bull beef.

Variation could be due to several factors:

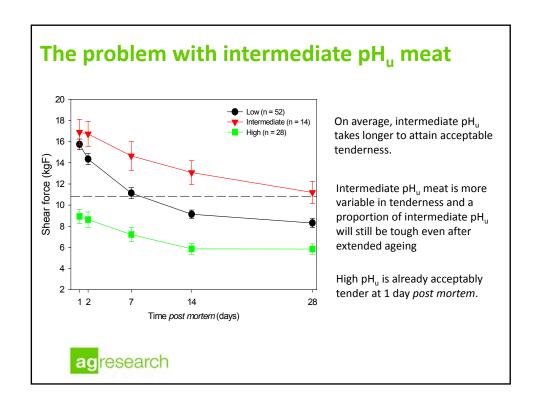
- 1. Animal handling on farm, transport, lairage
- 2. Meteorological conditions rainfall, temperature
- 3. Seasonal nutritional quality of pasture

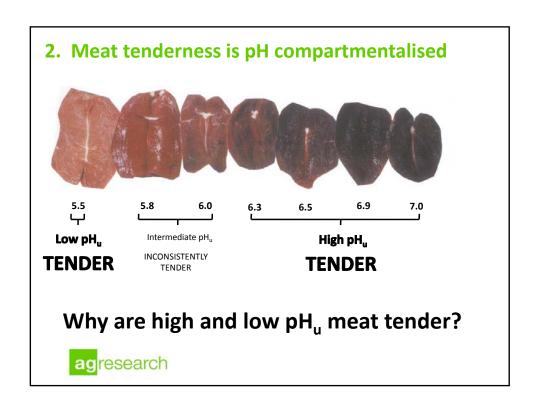
Tenderness in meat is due to degradation of muscle during ageing

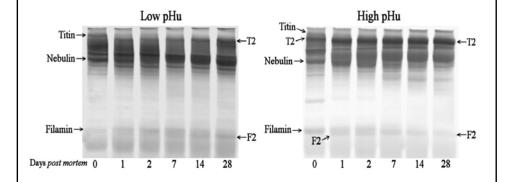
At slaughter

7 days post mortem

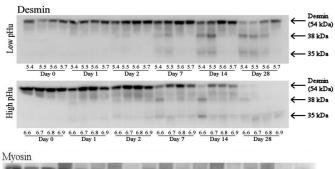
28 days post mortem

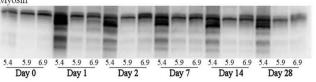

Enzyme degradation of key myofibrillar and associated proteins is the cause of *post mortem* tenderness


This is why meat is AGED

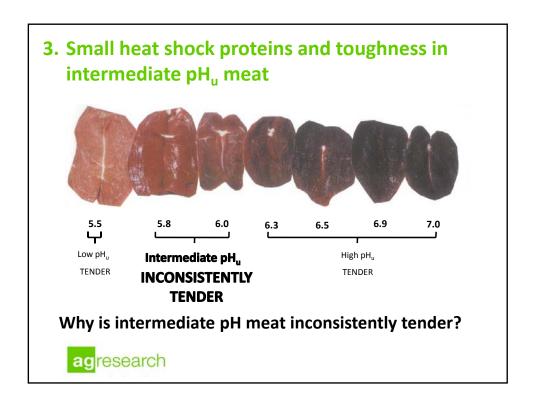

ag research

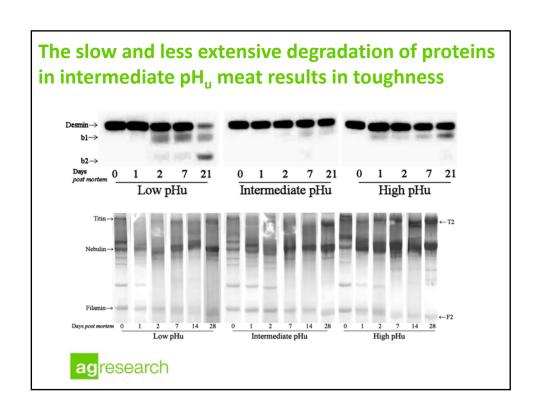
• Calpains optimal at near neutral pH • Cathepsins optimal at more acidic pH levels Calpain activity Intermediate pH Cathepsin activity 6.6 6.4 6.2 6.0 5.8 5.6 5.4


Tenderness in low and high pH_u meat is pH compartmentalised



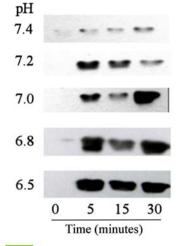
Tenderness in high pH_u meat attributed to the rapid degradation of large proteins such as titin and filamin by the enzyme μ -calpain.




Tenderness in low and high pH_u meat is pH compartmentalised

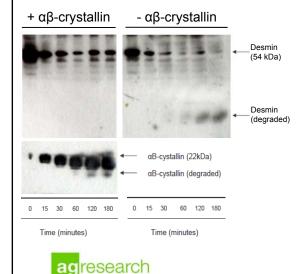
Tenderness in low pH_u meat due to a combination of the degradation of large proteins by μ -calpain and smaller proteins by cathepsins at latter ageing periods.

Small heat shock proteins and tenderness


sHSP Expression and Meat Tenderness	Reference
1 Changes in HSP27 significantly correlated with shear force	Hwang <i>et al.</i> (2005)
2 HSP27 and $\alpha\beta$ -crystallin down-regulated in most tender beef samples as measured by a sensory panel.	Bernard et al. (2007)
3 HSP27 levels in muscle early <i>post mortem</i> explained up to 89% of overall sensory tenderness of bull beef	Morzel <i>et al.</i> (2008)
4 Higher expression of HSP27 in tougher beef	Kim <i>et. al</i> (2008)
5 Higher levels of $\alpha\beta\text{-crystallin}$ in intermediate pH_u bull beef	Pulford et al. (2009)

Small heat shock proteins:

- Abundant in muscle cells
- · Involved in protein repair muscle damage
- · Expression amplified in stressed cells
- · Assist in proper assembly of proteins in living cells


$\alpha\beta$ -crystallin increasing interacts with myofibrils as pH decreases

- Increasing association of sHSP with myofibrils with decreasing pH
- Possibly greater sHSP associated with the myofibrils in the intermediate pH_u meat

$\alpha\beta$ -crystallin protects myofibrillar proteins from μ -calpain induced degradation

- αβ-Crystallin reduced extent of desmin and titin (not shown) degradation by μ-calpain
- αβ-Crystallin may act as an alternative substrate that competitively inhibits μ-calpain degradation of muscle proteins
- This results in the less extensive degradation of the muscle structure leading to meat toughness

Summary

1. pH Survey of New Zealand beef cattle

- Compared with previous studies, there has been an overall improvement in the pH profile of beef cattle.
- High prevalence of intermediate and high pH_{II} bull beef 19% and 32% respectively.
- Variation in the pH profile between seasons and plants.

2. Tenderness is pH compartmentalised

- Rapid tenderisation of high pH meat due to the faster and more extensive degradtaion of large myofibrillar proteins (titin, filamin) and desmin by the enzyme μ-calpain.
- The slower rate of tenderisation in low pH meat due to the slower degradation rates of large myofibrillar proteins by μ -calpain and smaller proteins (desmin) by cathepsins.

3. Small heat shock protein and toughness in intermediate pH, beef

- αβ-crystallin reduced the enzyme degradation of desmin and titin
- Increasing association of sHSP with myofibrils as pH declined
- Potential for sHSP protection of myofibrillar proteins from degradation optimal in intermediate pH beef.

Conclusion

- High incidence of intermediate and high pH bulls suggest they may be more susceptible to stress during transport and lairage.
- The degradation of proteins that are less abundant in muscle (titin, filamin, desmin) may contribute more to meat tenderness compared with more abundant muscle proteins such as myosin (43% of muscle protein).
- Will optimising processing conditions to maintain muscle at high pH levels for longer lead to the degradation of muscle proteins resulting in meat tenderness in intermediate pH_{II} meat?
- Is electrically stimulating muscle inducing the increased expression of small heat shock proteins leading to their contribution tough meat as observed in intermediate pH_{II} beef?

Acknowledgments

- Funding for this project was provided by New Zealand Ministry of Science and Innovation (contract number C10X0708)
- Food and Bio-Based Products Group: Dr. Katja Rosenvold, Adam Stuart, Kevin Taukiri, Guojie Wu and Mohammad Russel.
- · Martin Upsdell for statistical analysis of data
- · Supervisors: Dr. Owen Young and Dr. Eva Wiklund

ag research